References

  • Basu S., et al. (2008). An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophysica (56)1 pp. 88-99. doi: 10.2478/s11600-007-0038-y.
  • Chávez-Arroyo, R.A. et al. (2018). Analysis and validation of Weather Research and Forecasting model tendencies for meso-to-microscale modelling of the atmospheric boundary layer. Submitted for J. Phys.: Conf. Ser.
  • Churchfield M. et al. (2014) Overview of the Simulator fOr Wind Farm Application (SOWFA). Available at: https://nwtc.nrel.gov/system/files/SOWFA_tutorial_05-20-2014.pdf Source code available at: https://github.com/NREL/SOWFA
  • Etling D. (1996). Modelling of Atmospheric Flow Field. Chapter 2 - Modelling the Vertical ABL Structure pp. 56—57. World Scientific. ISBN: 978-981-02-2509-4
  • GNU Operating System (2018) GNU General Public License v3.0, https://www.gnu.org/licenses/gpl-3.0.en.html, last accessed February 2018
  • Hahmann A.N, et al. (2017) Description of the probabilistic wind atlas methodology, NEWA deliverable D3.1, July 2017
  • Lehner M (2012a) Extracting terms of the horizontal momentum and thermodynamic equations in the WRF model code. http://home.chpc.utah.edu/~u0653546/WRF_docs/Output_tendency_terms.pdf, last accessed February 2018
  • Lehner M (2012b) Observations and large-eddy simulations of the thermally driven cross-basin circulation in a small, closed basin, Ph.D. thesis, University of Utah, 2012
  • Mann J, et al. (2017) Complex terrain experiments in the New European Wind Atlas. Phil. Trans. R. Soc. A, 20160101, doi: 10.1098/rsta.2016.0101
  • The OpenFOAM Foundation (2018) OpenFOAM 2.4.0 Released, https://openfoam.org/version/2-4-0/, last accessed February 2018
  • Parente A et al. (2011). Improved k–ε model and wall function formulation for the RANS simulation of ABL flows.J. Wind Eng. Ind. Aerodyn. 99 267–278 ISSN 01676105
  • Petersen EL, Troen I (2012) Wind conditions and resource assessment.* WIREs Energy Environ*, 1: 206–217 doi: 10.1002/wene.4
  • Richards P. and Hoxey R (1993). Appropriate boundary conditions for computational wind engineering models using the k–eps turbulence model. J. Wind Eng. Ind. Aerodyn. 46-47, 145–153.
  • Sanz Rodrigo J, et al. (2016a) Mesoscale to Microscale Wind Farm Modelling and Evaluation. WIREs Energy Environ, 6: e214, doi: 10.1002/wene.214
  • Sanz Rodrigo J, et al. (2017a) Results of the GABLS3 diurnal cycle benchmark for wind energy applications. J. Phys.: Conf. Ser, 854: 012037, doi :10.1088/1742-6596/854/1/012037
  • Sanz Rodrigo, J., Churchfield, M., & Kosovic, B. (2017b). A methodology for the design and testing of atmospheric boundary layer models for wind energy applications. Wind Energy Science, 2(1), 35–54. https://doi.org/10.5194/wes-2-35-2017
  • Sanz Rodrigo J (2018) Windbench/GABLS3 benchmark. http://windbench.net/gabls-3, last accessed February 2018
  • Sogachev A. et al. (2012). Consistent Two-Equation Closure Modelling for Atmospheric Research: Buoyancy and Vegetation Implementations. Boundary-Layer Meteorol. 145: 307–327, doi:10.1007/s10546-012-9726-5
  • Skamarock WC, et al (2008) A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH
  • WRF Model User’s Page (2018) http://www2.mmm.ucar.edu/wrf/users/, last accessed February 2018